
Cloud and Big Data Summer
School, Stockholm, Aug., 2015
Jeffrey D. Ullman

Finding Similar Sets
Application to Document Similarity
Shingling
Minhashing

 You can download a free copy of Mining of
Massive Datasets, by Jure Leskovec, Anand
Rajaraman, and U. at www.mmds.org

 Relevant readings:

 LSH: 3.1-3.4, 3.8.

 Stream algorithms: 4.1-4.6.

 PageRank: 5.1, 5.3-5.5.

 Clustering: 7.1-7.4.

 Graph algorithms: 10.2.4-10.2.5, 10.7, 10.8.7.

 MapReduce theory: 2.5-2.6.

2

http://www.mmds.org/

 Go to www.gradiance.com/services
 Create an account for yourself.

 Passwords are >10 letters and digits, at least one of
each.

 Register for class 3E5A44A9
 You can try homeworks as many times as you

like.
 When you submit, you get advice for wrong

answers and you can repeat the same problem,
but with a different choice of answers.

17/08/2015 Mining of Massive Datasets. Leskovec, Rajaraman and Ullman. Stanford University 3

http://www.gradiance.com/services

 Machine learning is cool, but it is not all you
need to know about mining “big data.”

 I’m going to cover some of the other ideas that
are worth knowing.

4

 How do we find “similar” items in a very large
collection of items without looking at every pair?

 A quadratic process.

 Locality-sensitive hashing (LSH) is the general
idea of hashing items into bins many times, and
looking only at those items that fall into the
same bin at least once.

 Hard part: arranging that only high-similarity
items are likely to fall into the same bucket.

 Starting point: “similar documents.”

5

6

Many data-mining problems can be expressed as
finding “similar” sets:

1. Pages with similar words, e.g., for classification
by topic.

2. NetFlix users with similar tastes in movies, for
recommendation systems.

3. Dual: movies with similar sets of fans.

4. Entity resolution.

7

 Given a body of documents, e.g., the Web, find
pairs of documents with a lot of text in
common, such as:

 Mirror sites, or approximate mirrors.

 Application: Don’t want to show both in a search.

 Plagiarism, including large quotations.

 Similar news articles at many news sites.

 Application: Cluster articles by “same story.”

8

1. Shingling: convert documents, emails, etc., to
sets.

2. Minhashing: convert large sets to short
signatures, while preserving similarity.

3. Locality-sensitive hashing: focus on pairs of
signatures likely to be similar.

9

Docu-
ment

The set
of strings
of length k
that appear
in the doc-
ument

Signatures :
short integer
vectors that
represent the
sets, and
reflect their
similarity

Locality-
sensitive
Hashing

Candidate
pairs :
those pairs
of signatures
that we need
to test for
similarity.

10

 A k-shingle (or k-gram) for a document is a
sequence of k characters that appears in the
document.

 Example: k=2; doc = abcab. Set of 2-shingles =
{ab, bc, ca}.

 Represent a doc by its set of k-shingles.

 Documents that are intuitively similar will have
many shingles in common.

 Changing a word only affects k-shingles within
distance k from the word.

 Reordering paragraphs only affects the 2k
shingles that cross paragraph boundaries.

 Example: k=3, “The dog which chased the cat”
versus “The dog that chased the cat”.

 Only 3-shingles replaced are g_w, _wh, whi, hic, ich,
ch_, and h_c.

11

12

 To compress long shingles, we can hash them
to (say) 4 bytes.

 Called tokens.

 Represent a doc by its tokens, that is, the set
of hash values of its k-shingles.

 Two documents could (rarely) appear to have
shingles in common, when in fact only the
hash-values were shared.

14

 The Jaccard similarity of two sets is the size of
their intersection divided by the size of their
union.

 Sim(S, T) = |ST|/|ST|.

15

3 in intersection.
8 in union.
Jaccard similarity
 = 3/8

S T

16

 Rows = elements of the universal set.

 Example: the set of all k-shingles.

 Columns = sets.
 1 in row e and column S if and only if e is a

member of S.
 Column similarity is the Jaccard similarity of

the sets of their rows with 1.
 Typical matrix is sparse.

17

 C1 C2

 0 1
 1 0
 1 1 Sim(C1, C2) =
 0 0 2/5 = 0.4
 1 1
 0 1

*

*

*

*

*
*

*

18

 Given columns C1 and C2, rows may be classified as:
 C1 C2

 a 1 1

 b 1 0

 c 0 1

 d 0 0
 Also, a = # rows of type a , etc.
 Note Sim(C1, C2) = a/(a +b +c).

19

 Imagine the rows permuted randomly.
 Define minhash function h(C) = the first row (in

the permuted order) in which column C has 1.
 Use several (e.g., 100) independent hash

functions to create a signature for each column.
 The signatures can be displayed in another

matrix – the signature matrix – whose columns
represent the sets and the rows represent the
minhash values, in order for that column.

20

Input matrix

0 1 0 1

0 1 0 1

1 0 1 0

1 0 1 0

1 0 1 0

1 0 0 1

0 1 0 1 3

4

7

6

1

2

5

Signature matrix M

1 2 1 2

5

7

6

3

1

2

4

1 4 1 2

4

5

2

6

7

3

1

2 1 2 1

21

 The probability (over all permutations of
the rows) that h(C1) = h(C2) is the same as
Sim(C1, C2).

 Both are a /(a +b +c)!
 Why?

 Look down the permuted columns
C1 and C2 until we see a 1.

 If it’s a type-a row, then h(C1) = h(C2). If a
type-b or type-c row, then not.

22

 The similarity of signatures is the fraction of the
minhash functions in which they agree.

 Thinking of signatures as columns of integers, the
similarity of signatures is the fraction of rows in
which they agree.

 Thus, the expected similarity of two signatures
equals the Jaccard similarity of the columns or
sets that the signatures represent.

 And the longer the signatures, the smaller will be the
expected error.

23

 Input matrix
1 2 3 4

0 1 0 1

0 1 0 1

1 0 1 0

1 0 1 0

1 0 1 0

1 0 0 1

0 1 0 1 3

4

7

6

1

2

5

Signature matrix M
 1 2 3 4

1 2 1 2

5

7

6

3

1

2

4

1 4 1 2

4

5

2

6

7

3

1

2 1 2 1

 1-3 2-4 1-2
Col/Col 0.75 0.75 0
Sig/Sig 0.67 1.00 0

24

 Suppose 1 billion rows.
 Hard to pick a random permutation of

1…billion.
 Also, representing a random permutation

requires 1 billion entries.
 And accessing rows in permuted order may

lead to thrashing.

25

 A good approximation to permuting rows:
pick, say, 100 hash functions.

 For each column c and each hash function hi,
keep a “slot” M(i, c).

 Intent: M(i, c) will become the smallest value
of hi(r) for which column c has 1 in row r.

 I.e., hi(r) gives order of rows for ith permutation.

26

for each row r do begin
 for each hash function hi do
 compute hi(r);
 for each column c
 if c has 1 in row r
 for each hash function hi do

 if hi(r) is smaller than M(i, c) then

 M(i, c) := hi(r);

end;

27

Row C1 C2
 1 1 0
 2 0 1
 3 1 1
 4 1 0
 5 0 1

h(x) = x mod 5, i.e., permutation
 [5,1,2,3,4]
g(x) = (2x+1) mod 5, i.e., permutation
 [2,5,3,1,4]

h(1) = 1 1 ∞
g(1) = 3 3 ∞

h(2) = 2 1 2
g(2) = 0 3 0

h(3) = 3 1 2
g(3) = 2 2 0

h(4) = 4 1 2
g(4) = 4 2 0

h(5) = 0 1 0
g(5) = 1 2 0

Sig1 Sig2

28

 Often, data is given by column, not row.

 Example: columns = documents, rows = shingles.

 If so, sort matrix once so it is by row.

30

 General idea: Generate from the collection of
all elements (signatures in our example) a small
list of candidate pairs: pairs of elements whose
similarity must be evaluated.

 For signature matrices: Hash columns to many
buckets, and make elements of the same bucket
candidate pairs.

31

 Pick a similarity threshold t, a fraction < 1.
 We want a pair of columns c and d of the

signature matrix M to be a candidate pair if and
only if their signatures agree in at least fraction t
of the rows.

 I.e., M(i, c) = M(i, d) for at least fraction t values of i.

32

 Big idea: hash columns of signature matrix M
several times.

 Arrange that (only) similar columns are likely
to hash to the same bucket.

 Candidate pairs are those that hash at least
once to the same bucket.

33

Matrix M

r rows
per band

b bands

One hash
value

One signature

34

 Divide matrix M into b bands of r rows.
 For each band, hash its portion of each column

to a hash table with k buckets.

 Make k as large as possible.

 Candidate column pairs are those that hash to
the same bucket for ≥ 1 band.

 Tune b and r to catch most similar pairs, but
few nonsimilar pairs.

35

Matrix M

Buckets

Columns 6 and 7 are
surely different.

Columns 2 and 6
are probably identical
in this band.

r rows b bands

36

 Suppose 100,000 columns.
 Signatures of 100 integers.
 Therefore, signatures take 40Mb.

 They fit easily into main memory.

 Want all 80%-similar pairs of documents.
 5,000,000,000 pairs of signatures can take a

while to compare.
 Choose 20 bands of 5 integers/band.

37

 Probability C1, C2 identical in one particular
band: (0.8)5 = 0.328.

 Probability C1, C2 are not similar in any of the 20
bands: (1-0.328)20 = .00035 .

 i.e., about 1/3000th of the 80%-similar underlying
sets are false negatives.

38

 Probability C1, C2 identical in any one particular
band: (0.4)5 = 0.01 .

 Probability C1, C2 identical in ≥ 1 of 20 bands:
≤ 20 * 0.01 = 0.2 .

 But false positives much lower for similarities
<< 40%.

39

 Similarity s of two sets

Probability
of sharing
a bucket

t

No chance
if s < t

Probability
= 1 if s > t

40

Similarity s of two sets

Probability
of sharing
a bucket

Remember:
probability of equal
minhash values
= Jaccard similarity

t

False
positives

False
negatives

41

Similarity s of two sets

Probability
of sharing
a bucket

t

s r

All rows
of a band
are equal

1 -

Some row
of a band
unequal

()b

No bands
identical

1 -

At least
one band
identical

t ~ (1/b)1/r

42

 s 1-(1-sr)b

.2 .006

.3 .047

.4 .186

.5 .470

.6 .802

.7 .975

.8 .9996

43

 Tune r and c to get almost all pairs with
similar signatures, but eliminate most pairs
that do not have similar signatures.

 Check that candidate pairs really do have
similar signatures.

 Optional: In another pass through data,
check that the remaining candidate pairs
really represent similar sets .

