Locality-Sensitive Hashing

Finding Similar Sets Application to Document Similarity Shingling Minhashing

Cloud and Big Data Summer School, Stockholm, Aug., 2015 Jeffrey D. Ullman

- You can download a free copy of *Mining of Massive Datasets*, by Jure Leskovec, Anand Rajaraman, and U. at <u>www.mmds.org</u>
- Relevant readings:
 - LSH: 3.1-3.4, 3.8.
 - Stream algorithms: 4.1-4.6.
 - PageRank: 5.1, 5.3-5.5.
 - Clustering: 7.1-7.4.
 - Graph algorithms: 10.2.4-10.2.5, 10.7, 10.8.7.
 - MapReduce theory: 2.5-2.6.

Automated Gradiance Homework

- Go to <u>www.gradiance.com/services</u>
- Create an account for yourself.
 - Passwords are >10 letters and digits, at least one of each.
- Register for class 3E5A44A9
- You can try homeworks as many times as you like.
- When you submit, you get advice for wrong answers and you can repeat the same problem, but with a different choice of answers.

My Biggest Point

- Machine learning is cool, but it is not all you need to know about mining "big data."
- I'm going to cover some of the other ideas that are worth knowing.

A Fundamental Idea of CS

- How do we find "similar" items in a very large collection of items without looking at every pair?
 - A quadratic process.
- Locality-sensitive hashing (LSH) is the general idea of hashing items into bins many times, and looking only at those items that fall into the same bin at least once.
- Hard part: arranging that only high-similarity items are likely to fall into the same bucket.
- Starting point: "similar documents."

Applications of Set-Similarity

Many data-mining problems can be expressed as finding "similar" sets:

- 1. Pages with similar words, e.g., for classification by topic.
- 2. NetFlix users with similar tastes in movies, for recommendation systems.
- 3. Dual: movies with similar sets of fans.
- 4. Entity resolution.

Similar Documents

- Given a body of documents, e.g., the Web, find pairs of documents with a lot of text in common, such as:
 - Mirror sites, or approximate mirrors.
 - Application: Don't want to show both in a search.
 - Plagiarism, including large quotations.
 - Similar news articles at many news sites.
 - Application: Cluster articles by "same story."

Three Essential Techniques for Similar Documents

- 1. Shingling: convert documents, emails, etc., to sets.
- 2. *Minhashing*: convert large sets to short signatures, while preserving similarity.
- 3. Locality-sensitive hashing: focus on pairs of signatures likely to be similar.

The Big Picture

Shingles

- A k-shingle (or k-gram) for a document is a sequence of k characters that appears in the document.
- Example: k=2; doc = abcab. Set of 2-shingles = {ab, bc, ca}.
- Represent a doc by its set of k-shingles.

Shingles and Similarity

- Documents that are intuitively similar will have many shingles in common.
- Changing a word only affects k-shingles within distance k from the word.
- Reordering paragraphs only affects the 2k shingles that cross paragraph boundaries.
- Example: k=3, "The dog which chased the cat" versus "The dog that chased the cat".
 - Only 3-shingles replaced are g_w, _wh, whi, hic, ich, ch_, and h_c.

Shingles: Compression Option

- To compress long shingles, we can hash them to (say) 4 bytes.
 - Called tokens.
- Represent a doc by its tokens, that is, the set of hash values of its k-shingles.
- Two documents could (rarely) appear to have shingles in common, when in fact only the hash-values were shared.

Minhashing

Jaccard Similarity Measure Definition of Signatures Constructing Signatures in Practice

Jaccard Similarity

- The Jaccard similarity of two sets is the size of their intersection divided by the size of their union.
- $Sim(S, T) = |S \cap T| / |S \cup T|$.

Example: Jaccard Similarity

3 in intersection. 8 in union. Jaccard similarity = 3/8

From Sets to Boolean Matrices

- Rows = elements of the universal set.
 - Example: the set of all k-shingles.
- Columns = sets.
- 1 in row e and column S if and only if e is a member of S.
- Column similarity is the Jaccard similarity of the sets of their rows with 1.
- Typical matrix is sparse.

Example: Column Similarity

Four Types of Rows

Given columns C₁ and C₂, rows may be classified as:

$$\begin{array}{cccc} C_{1} & C_{2} \\ a & 1 & 1 \\ b & 1 & 0 \\ c & 0 & 1 \\ d & 0 & 0 \end{array}$$

$$\begin{array}{cccc} Also, a = \# rows of type a, etc. \\ Note Sim(C_{1}, C_{2}) = a/(a+b+c). \end{array}$$

Minhashing

- Imagine the rows permuted randomly.
- Define *minhash function* h(C) = the first row (in the permuted order) in which column C has 1.
- Use several (e.g., 100) independent hash functions to create a signature for each column.
- The signatures can be displayed in another matrix – the signature matrix – whose columns represent the sets and the rows represent the minhash values, in order for that column.

Minhashing Example

1	4
3	2
7	1
6	3
2	6
5	7
4	5

Input matrix

Signature matrix M

Surprising Property

- The probability (over all permutations of the rows) that h(C₁) = h(C₂) is the same as Sim(C₁, C₂).
- Both are *a* /(*a* +*b* +*c*)!

Why?

- Look down the permuted columns C₁ and C₂ until we see a 1.
- If it's a type-a row, then h(C₁) = h(C₂). If a type-b or type-c row, then not.

Similarity for Signatures

- The similarity of signatures is the fraction of the minhash functions in which they agree.
 - Thinking of signatures as columns of integers, the similarity of signatures is the fraction of rows in which they agree.
- Thus, the expected similarity of two signatures equals the Jaccard similarity of the columns or sets that the signatures represent.
 - And the longer the signatures, the smaller will be the expected error.

Min Hashing – Example

	1-3	2-4	1-2
Col/Col		0.75	0
Sig/Sig	0.67	1.00	0

Implementation of Minhashing

- Suppose 1 billion rows.
- Hard to pick a random permutation of 1...billion.
- Also, representing a random permutation requires 1 billion entries.
- And accessing rows in permuted order may lead to thrashing.

Implementation – (2)

- A good approximation to permuting rows: pick, say, 100 hash functions.
- For each column *c* and each hash function *h_i*, keep a "slot" *M*(*i*, *c*).
- Intent: M(i, c) will become the smallest value of $h_i(r)$ for which column c has 1 in row r.
 - I.e., $h_i(r)$ gives order of rows for i^{th} permutation.

for each row r do begin for each hash function h_i do compute $h_i(r)$; **for** each column *c* if c has 1 in row r for each hash function h_i do if $h_i(r)$ is smaller than M(i, c) then $M(i, c) := h_i(r);$

end;

Example

				6 h(1) = 1	Sig1	Sig₂ ∞
				q(1) = 1		∞
				9(-) 5	5	
Row	Cı	C2		h(2) = 2	1	2
1	1	0		<i>g</i> (2) = 0	3	0
2	0	1		-		
3	1	1				
4	1	0		h(3) = 3		2
5	0	1		<i>g</i> (3) = 2	2	0
				h(4) = 4	1	2
				<i>g</i> (4) = 4	2	0
		5, i.e., p	ermutation	h(5) = 0	1	0
[5,1,2,3,4]			q(5) = 1		0	
-		mod 5 , i	.e., permutation			
[2,	5,3,1,4]					

Implementation – (4)

- Often, data is given by column, not row.
 - Example: columns = documents, rows = shingles.
- If so, sort matrix once so it is by row.

Locality-Sensitive Hashing

Focusing on Similar Minhash Signatures Other Applications Will Follow

Locality-Sensitive Hashing

- General idea: Generate from the collection of all elements (signatures in our example) a small list of *candidate pairs*: pairs of elements whose similarity must be evaluated.
- For signature matrices: Hash columns to many buckets, and make elements of the same bucket candidate pairs.

Candidate Generation From Minhash Signatures

- Pick a similarity threshold t, a fraction < 1.</p>
- We want a pair of columns c and d of the signature matrix M to be a candidate pair if and only if their signatures agree in at least fraction t of the rows.
 - I.e., M(i, c) = M(i, d) for at least fraction t values of i.

LSH for Minhash Signatures

- Big idea: hash columns of signature matrix M several times.
- Arrange that (only) similar columns are likely to hash to the same bucket.
- Candidate pairs are those that hash *at least* once to the same bucket.

Partition Into Bands

Partition into Bands – (2)

- Divide matrix *M* into *b* bands of *r* rows.
- For each band, hash its portion of each column to a hash table with k buckets.
 - Make k as large as possible.
- Candidate column pairs are those that hash to the same bucket for ≥ 1 band.
- Tune b and r to catch most similar pairs, but few nonsimilar pairs.

Hash Function for One Bucket

Example: Bands

- Suppose 100,000 columns.
- Signatures of 100 integers.
- Therefore, signatures take 40Mb.
 - They fit easily into main memory.
- Want all 80%-similar pairs of documents.
- 5,000,000,000 pairs of signatures can take a while to compare.
- Choose 20 bands of 5 integers/band.

Suppose C₁, C₂ are 80% Similar

- Probability C₁, C₂ identical in one particular band: (0.8)⁵ = 0.328.
- Probability C_1 , C_2 are *not* similar in any of the 20 bands: $(1-0.328)^{20} = .00035$.
 - i.e., about 1/3000th of the 80%-similar underlying sets are false negatives.

Suppose C₁, C₂ Only 40% Similar

- Probability C_1 , C_2 identical in any one particular band: $(0.4)^5 = 0.01$.
- Probability C_1 , C_2 identical in ≥ 1 of 20 bands: $\le 20 * 0.01 = 0.2$.
- But false positives much lower for similarities
 < 40%.

Analysis of LSH – What We Want

What One Band of One Row Gives You

What b Bands of r Rows Gives You

Example: *b* = 20; *r* = 5

5	1-(1-s ^r) ^b
.2	.006
.3	.047
.4	.186
.5	.470
.6	.802
.7	.975
.8	.9996

- Tune r and c to get almost all pairs with similar signatures, but eliminate most pairs that do not have similar signatures.
- Check that candidate pairs really do have similar signatures.
- Optional: In another pass through data, check that the remaining candidate pairs really represent similar sets.