# Locality-Sensitive Hashing 

Finding Similar Sets
Application to Document Similarity
Shingling
Minhashing
Cloud and Big Data Summer School, Stockholm, Aug., 2015 Jeffrey D. Ullman

## Free Book

- You can download a free copy of Mining of Massive Datasets, by Jure Leskovec, Anand Rajaraman, and U. at www.mmds.org
- Relevant readings:
- LSH: 3.1-3.4, 3.8.
- Stream algorithms: 4.1-4.6.
- PageRank: 5.1, 5.3-5.5.
- Clustering: 7.1-7.4.
- Graph algorithms: 10.2.4-10.2.5, 10.7, 10.8.7.
- MapReduce theory: 2.5-2.6.


## Automated Gradiance Homework

- Go to www.gradiance.com/services
- Create an account for yourself.
- Passwords are $\geq 10$ letters and digits, at least one of each.
- Register for class 3E5A44A9
- You can try homeworks as many times as you like.
- When you submit, you get advice for wrong answers and you can repeat the same problem, but with a different choice of answers.


## My Biggest Point

- Machine learning is cool, but it is not all you need to know about mining "big data."
- I'm going to cover some of the other ideas that are worth knowing.


## A Fundamental Idea of CS

- How do we find "similar" items in a very large collection of items without looking at every pair?
- A quadratic process.
- Locality-sensitive hashing (LSH) is the general idea of hashing items into bins many times, and looking only at those items that fall into the same bin at least once.
- Hard part: arranging that only high-similarity items are likely to fall into the same bucket.
- Starting point: "similar documents."


## Applications of Set-Similarity

Many data-mining problems can be expressed as finding "similar" sets:

1. Pages with similar words, e.g., for classification by topic.
2. NetFlix users with similar tastes in movies, for recommendation systems.
3. Dual: movies with similar sets of fans.
4. Entity resolution.

## Similar Documents

- Given a body of documents, e.g., the Web, find pairs of documents with a lot of text in common, such as:
- Mirror sites, or approximate mirrors.
- Application: Don’t want to show both in a search.
- Plagiarism, including large quotations.
- Similar news articles at many news sites.
- Application: Cluster articles by "same story."


## Three Essential Techniques for Similar Documents

1. Shingling: convert documents, emails, etc., to sets.
2. Minhashing: convert large sets to short signatures, while preserving similarity.
3. Locality-sensitive hashing: focus on pairs of signatures likely to be similar.

## The Big Picture



## Shingles

- A $k$-shingle (or $k$-gram) for a document is a sequence of $k$ characters that appears in the document.
- Example: k=2; doc = abcab. Set of 2-shingles = \{ab, bc, ca\}.
- Represent a doc by its set of $k$-shingles.


## Shingles and Similarity

- Documents that are intuitively similar will have many shingles in common.
- Changing a word only affects k-shingles within distance $k$ from the word.
- Reordering paragraphs only affects the 2k shingles that cross paragraph boundaries.
- Example: $\mathrm{k}=3$, "The dog which chased the cat" versus "The dog that chased the cat".
- Only 3-shingles replaced are g_w, _wh, whi, hic, ich, ch_, and h_c.


## Shingles: Compression Option

- To compress long shingles, we can hash them to (say) 4 bytes.
- Called tokens.
- Represent a doc by its tokens, that is, the set of hash values of its $k$-shingles.
- Two documents could (rarely) appear to have shingles in common, when in fact only the hash-values were shared.


## Minhashing

Jaccard Similarity Measure
Definition of Signatures
Constructing Signatures in Practice

## Jaccard Similarity

The Jaccard similarity of two sets is the size of their intersection divided by the size of their union.

- $\operatorname{Sim}(S, T)=|S \cap T| /|S \cup T|$.


## Example: Jaccard Similarity



3 in intersection.
8 in union.
Jaccard similarity
$=3 / 8$

## From Sets to Boolean Matrices

- Rows = elements of the universal set.
- Example: the set of all $k$-shingles.
- Columns = sets.
- 1 in row $e$ and column $S$ if and only if $e$ is a member of $S$.
- Column similarity is the Jaccard similarity of the sets of their rows with 1.
- Typical matrix is sparse.


## Example: Column Similarity



## Four Types of Rows

- Given columns $C_{1}$ and $C_{2}$, rows may be classified as:

|  | $\underline{\mathrm{C}}_{1}$ | $\mathrm{C}_{2}$ |
| :--- | :--- | :--- |
| $a$ | 1 | 1 |
| $b$ | 1 | 0 |
| $c$ | 0 | 1 |
| $d$ | 0 | 0 |

- Also, $a=$ \# rows of type $a$, etc.
- Note $\operatorname{Sim}\left(\mathrm{C}_{1}, \mathrm{C}_{2}\right)=a /(a+b+c)$.


## Minhashing

- Imagine the rows permuted randomly.
- Define minhash function $h(C)=$ the first row (in the permuted order) in which column $C$ has 1.
- Use several (e.g., 100) independent hash functions to create a signature for each column.
- The signatures can be displayed in another matrix - the signature matrix - whose columns represent the sets and the rows represent the minhash values, in order for that column.


## Minhashing Example

Input matrix

| 1 | 4 | 3 | 1 | 0 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3 | 2 | 4 | 1 | 0 | 0 | 1 |
| 7 | 1 | 7 | 0 | 1 | 0 | 1 |
| 6 | 3 | 6 | 0 | 1 | 0 | 1 |
| 2 | 6 | 1 | 0 | 1 | 0 | 1 |
| 5 | 7 | 2 | 1 | 0 | 1 | 0 |
| 4 | 5 | 5 | 1 | 0 | 1 | 0 |

Signature matrix $M$

| 2 | 1 | 2 | 1 |
| :--- | :--- | :--- | :--- |
| 2 | 1 | 4 | 1 |
| 1 | 2 | 1 | 2 |

## Surprising Property

- The probability (over all permutations of the rows) that $h\left(\mathrm{C}_{1}\right)=h\left(\mathrm{C}_{2}\right)$ is the same as $\operatorname{Sim}\left(\mathrm{C}_{1}, \mathrm{C}_{2}\right)$.
- Both are $a /(a+b+c)$ !
- Why?
- Look down the permuted columns $\mathrm{C}_{1}$ and $\mathrm{C}_{2}$ until we see a 1 .
- If it's a type-a row, then $h\left(\mathrm{C}_{1}\right)=h\left(\mathrm{C}_{2}\right)$. If a type-b or type-c row, then not.


## Similarity for Signatures

- The similarity of signatures is the fraction of the minhash functions in which they agree.
- Thinking of signatures as columns of integers, the similarity of signatures is the fraction of rows in which they agree.
- Thus, the expected similarity of two signatures equals the Jaccard similarity of the columns or sets that the signatures represent.
- And the longer the signatures, the smaller will be the expected error.


## Min Hashing - Example

Input matrix

| $\|1\|$ |  |  | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 4 | 3 | 1 | 0 | 1 | 0 |
| 3 | 2 | 4 | 1 | 0 | 0 | 1 |
| 7 | 1 | 7 | 0 | 1 | 0 | 1 |
| 6 | 3 | 6 | 0 | 1 | 0 | 1 |
| 2 | 6 | 1 | 0 | 1 | 0 | 1 |
| 5 | 7 | 2 | 1 | 0 | 1 | 0 |
| 4 | 5 | 5 | 1 | 0 | 1 | 0 |

Signature matrix $M$


|  | $1-3$ | $2-4$ | $1-2$ |
| :--- | :--- | :--- | :--- |
| Col/Col | 0.75 | 0.75 | 0 |
| Sig/Sig | 0.67 | 1.00 | 0 |

## Implementation of Minhashing

- Suppose 1 billion rows.
- Hard to pick a random permutation of 1...billion.
- Also, representing a random permutation requires 1 billion entries.
- And accessing rows in permuted order may lead to thrashing.


## Implementation - (2)

A good approximation to permuting rows: pick, say, 100 hash functions.

- For each column $c$ and
keep a "slot" $M(i, c)$. Intent: $M(i, c)$ will become the smallest value of $h_{i}(r)$ for which column $c$ has 1 in row $r$.
- I.e., $h_{i}(r)$ gives order of rows for $i^{\text {th }}$ permutation.


## Implementation - (3)

for each row $r$ do begin for each hash function $h_{i}$ do
compute $h_{i}(r)$;
for each column $c$
if $c$ has 1 in row $r$ for each hash function $h_{i}$ do
if $h_{i}(r)$ is smaller than $M(i, c)$ then

$$
M(i, c):=h_{i}(r) ;
$$

end;

## Example

\[

\]

| Row | $C_{1}$ | $C_{2}$ |
| :---: | :---: | :---: |
| 1 | 1 <br> 2 | 0 |
| 3 | 0 | 1 |
| 4 | 1 | 1 |
| 5 | 1 | 0 |
|  | 0 | 1 |

$$
\begin{array}{lll}
h(2)=2 & 1 & 2 \\
g(2)=0 & 3 & 0 \\
& & \\
h(3)=3 & 1 & 2 \\
g(3)=2 & 2 & 0
\end{array}
$$

$$
\begin{array}{llll}
h(4)=4 & 1 & 2
\end{array}
$$

$$
g(4)=4 \quad 2
$$

$h(x)=x \bmod 5$, i.e., permutation
[ $5,1,2,3,4]$
$g(x)=(2 x+1) \bmod 5$, i.e., permutation
$h(5)=0 \quad 1$
$g(5)=1 \quad 2$
0

## Implementation - (4)

- Often, data is given by column, not row.
- Example: columns = documents, rows = shingles.
- If so, sort matrix once so it is by row.


# Locality-Sensitive Hashing 

Focusing on Similar Minhash Signatures Other Applications Will Follow

## Locality-Sensitive Hashing

- General idea: Generate from the collection of all elements (signatures in our example) a small list of candidate pairs: pairs of elements whose similarity must be evaluated.
- For signature matrices: Hash columns to many buckets, and make elements of the same bucket candidate pairs.


## Candidate Generation From Minhash <br> Signatures

- Pick a similarity threshold $t$, a fraction < 1 .
- We want a pair of columns $c$ and $d$ of the signature matrix $M$ to be a candidate pair if and only if their signatures agree in at least fraction $t$ of the rows.
- I.e., $M(i, c)=M(i, d)$ for at least fraction $t$ values of $i$.


## LSH for Minhash Signatures

- Big idea: hash columns of signature matrix $M$ several times.
- Arrange that (only) similar columns are likely to hash to the same bucket.
- Candidate pairs are those that hash at least once to the same bucket.


## Partition Into Bands



## Partition into Bands - (2)

- Divide matrix $M$ into $b$ bands of $r$ rows.
- For each band, hash its portion of each column to a hash table with $k$ buckets.
- Make $k$ as large as possible.
- Candidate column pairs are those that hash to the same bucket for $\geq 1$ band.
- Tune $b$ and $r$ to catch most similar pairs, but few nonsimilar pairs.


## Hash Function for One Bucket



Matrix M

## Example: Bands

- Suppose 100,000 columns.
- Signatures of 100 integers.
- Therefore, signatures take 40Mb.
- They fit easily into main memory.
- Want all 80\%-similar pairs of documents.
- 5,000,000,000 pairs of signatures can take a while to compare.
- Choose 20 bands of 5 integers/band.


## Suppose $C_{1 /} C_{2}$ are 80\% Similar

- Probability $\mathrm{C}_{1}, \mathrm{C}_{2}$ identical in one particular band: $(0.8)^{5}=0.328$.
- Probability $\mathrm{C}_{1}, \mathrm{C}_{2}$ are not similar in any of the 20 bands: $(1-0.328)^{20}=.00035$.
- i.e., about $1 / 3000$ th of the $80 \%$-similar underlying sets are false negatives.


## Suppose $\mathrm{C}_{1} \mathrm{C}_{2}$ Only 40\% Similar

- Probability $\mathrm{C}_{1}, \mathrm{C}_{2}$ identical in any one particular band: $(0.4)^{5}=0.01$.
- Probability $\mathrm{C}_{1}, \mathrm{C}_{2}$ identical in $\geq 1$ of 20 bands: $\leq 20^{*} 0.01=0.2$.
- But false positives much lower for similarities << 40\%.


## Analysis of LSH - What We Want



Similarity s of two sets

## What One Band of One Row Gives You



## What $b$ Bands of $r$ Rows Gives You



Similarity s of two sets

# Example: $b=20 ; r=5$ 

| $\boldsymbol{s}$ | $\mathbf{1 - ( 1 - s}^{\mathbf{r}} \mathbf{b}^{\mathbf{b}}$ |
| :---: | :---: |
| .2 | .006 |
| .3 | .047 |
| .4 | .186 |
| .5 | .470 |
| .6 | .802 |
| .7 | .975 |
| .8 | .9996 |

## LSH Summary

- Tune $r$ and $c$ to get almost all pairs with similar signatures, but eliminate most pairs that do not have similar signatures.
- Check that candidate pairs really do have similar signatures.
- Optional: In another pass through data, check that the remaining candidate pairs really represent similar sets .

