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Finding Similar Sets 
Application to Document Similarity 
Shingling 
Minhashing 



 You can download a free copy of Mining of 
Massive Datasets, by Jure Leskovec, Anand 
Rajaraman, and U. at www.mmds.org 

 Relevant readings: 

 LSH: 3.1-3.4, 3.8. 

 Stream algorithms: 4.1-4.6. 

 PageRank: 5.1, 5.3-5.5. 

 Clustering: 7.1-7.4. 

 Graph algorithms: 10.2.4-10.2.5, 10.7, 10.8.7. 

 MapReduce theory: 2.5-2.6. 
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http://www.mmds.org/


 Go to www.gradiance.com/services 
 Create an account for yourself. 

 Passwords are >10 letters and digits, at least one of 
each. 

 Register for class 3E5A44A9 
 You can try homeworks as many times as you 

like. 
 When you submit, you get advice for wrong 

answers and you can repeat the same problem, 
but with a different choice of answers. 
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 Machine learning is cool, but it is not all you 
need to know about mining “big data.” 

 I’m going to cover some of the other ideas that 
are worth knowing. 

4 



 How do we find “similar” items in a very large 
collection of items without looking at every pair? 

 A quadratic process. 

 Locality-sensitive hashing (LSH) is the general 
idea of hashing items into bins many times, and 
looking only at those items that fall into the 
same bin at least once. 

 Hard part: arranging that only high-similarity 
items are likely to fall into the same bucket. 

 Starting point: “similar documents.” 
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Many data-mining problems can be expressed as 
finding “similar” sets: 

1. Pages with similar words, e.g., for classification 
by topic. 

2. NetFlix users with similar tastes in movies, for 
recommendation systems. 

3. Dual: movies with similar sets of fans. 

4. Entity resolution. 
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 Given a body of documents, e.g., the Web, find 
pairs of documents with a lot of text in 
common, such as: 

 Mirror sites, or approximate mirrors. 

 Application: Don’t want to show both in a search. 

 Plagiarism, including large quotations. 

 Similar news articles at many news sites. 

 Application: Cluster articles by “same story.” 
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1. Shingling: convert documents, emails, etc., to 
sets. 

2. Minhashing: convert large sets to short 
signatures, while preserving similarity. 

3. Locality-sensitive hashing: focus on pairs of 
signatures likely to be similar. 
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Docu- 
ment 

The set 
of strings 
of length k 
that appear 
in the doc- 
ument 

Signatures : 
short integer 
vectors that 
represent the 
sets, and 
reflect their 
similarity 

Locality- 
sensitive 
Hashing 

Candidate 
pairs : 
those pairs 
of signatures 
that we need 
to test for 
similarity. 
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 A k-shingle (or k-gram) for a document is a 
sequence of k  characters that appears in the 
document. 

 Example: k=2; doc = abcab.  Set of 2-shingles = 
{ab, bc, ca}. 

 Represent a doc by its set of k-shingles. 



 Documents that are intuitively similar will have 
many shingles in common. 

 Changing a word only affects k-shingles within 
distance k from the word. 

 Reordering paragraphs only affects the 2k 
shingles that cross paragraph boundaries. 

 Example: k=3, “The dog which chased the cat” 
versus “The dog that chased the cat”. 

 Only 3-shingles replaced are g_w, _wh, whi, hic, ich, 
ch_, and h_c. 
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 To compress long shingles, we can hash them 
to (say) 4 bytes. 

 Called tokens. 

 Represent a doc by its tokens, that is, the set 
of hash values of its k-shingles. 

 Two documents could (rarely) appear to have 
shingles in common, when in fact only the 
hash-values were shared. 
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 The Jaccard similarity  of two sets is the size of 
their intersection divided by the size of their 
union. 

 Sim(S, T) = |ST|/|ST|. 
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3 in intersection. 
8 in union. 
Jaccard similarity 
   = 3/8 

S T 
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 Rows = elements of the universal set. 

 Example: the set of all k-shingles. 

 Columns = sets. 
 1 in row e  and column S  if and only if e is a 

member of S. 
 Column similarity is the Jaccard similarity of 

the sets of their rows with 1. 
 Typical matrix is sparse. 
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 C1 C2 

 0 1 
 1 0 
 1 1  Sim(C1, C2) = 
 0 0   2/5 = 0.4 
 1 1 
 0 1 

 

* 

* 

* 

* 

* 
* 

* 
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 Given columns C1 and C2, rows may be classified as: 
    C1 C2 

   a 1 1 

   b 1 0 

   c 0 1 

   d 0 0 
 Also, a  = # rows of type a , etc. 
 Note Sim(C1, C2) = a/(a +b +c ). 
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 Imagine the rows permuted randomly. 
 Define minhash function h(C) = the first row (in 

the permuted order) in which column C has 1. 
 Use several (e.g., 100) independent hash 

functions to create a signature for each column. 
 The signatures can be displayed in another 

matrix – the signature matrix – whose columns 
represent the sets and the rows represent the 
minhash values, in order for that column. 
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Input matrix  

0 1 0 1 

0 1 0 1 

1 0 1 0 

1 0 1 0 

1 0 1 0 

1 0 0 1 

0 1 0 1  3 

4 

7 

6 

1 

2 

5 

Signature matrix M 

1 2 1 2 

5 

7 

6 

3 

1 

2 

4 

1 4 1 2 

4 

5 

2 

6 

7 

3 

1 

2 1 2 1 
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 The probability (over all permutations of 
the rows) that h(C1) = h(C2) is the same as 
Sim(C1, C2). 

 Both are a /(a +b +c )! 
 Why? 

 Look down the permuted columns                   
C1 and C2 until we see a 1. 

 If it’s a type-a  row, then h(C1) = h(C2).  If a 
type-b  or type-c  row, then not. 
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 The similarity of signatures is the fraction of the 
minhash functions in which they agree. 

 Thinking of signatures as columns of integers, the 
similarity of signatures is the fraction of rows in 
which they agree. 

 Thus, the expected similarity of two signatures 
equals the Jaccard similarity of the columns or 
sets that the signatures represent. 

 And the longer the signatures, the smaller will be the 
expected error. 
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        Input matrix 
1          2           3            4 

0 1 0 1 

0 1 0 1 

1 0 1 0 

1 0 1 0 

1 0 1 0 

1 0 0 1 

0 1 0 1  3 

4 

7 

6 

1 

2 

5 

Signature matrix M 
 1        2          3         4 

1 2 1 2 

5 

7 

6 

3 

1 

2 

4 

1 4 1 2 

4 

5 

2 

6 

7 

3 

1 

2 1 2 1 

 
                 1-3      2-4      1-2 
Col/Col  0.75     0.75     0  
Sig/Sig   0.67    1.00     0 
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 Suppose 1 billion rows. 
 Hard to pick a random permutation of 

1…billion. 
 Also, representing a random permutation 

requires 1 billion entries. 
 And accessing rows in permuted order may 

lead to thrashing. 
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 A good approximation to permuting rows: 
pick, say, 100 hash functions. 

 For each column c and each hash function hi, 
keep a “slot” M(i, c). 

 Intent: M(i, c) will become the smallest value 
of hi(r) for which column c has 1 in row r. 

 I.e., hi(r) gives order of rows for ith permutation. 
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for each row r do begin 
    for each hash function hi do 
    compute hi(r); 
    for each column c  
  if c has 1 in row r  
     for each hash function hi do 

           if hi(r) is smaller than M(i, c) then 

    M(i, c) := hi(r); 

end; 
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Row C1 C2 
  1  1  0 
  2  0  1 
  3  1  1 
  4  1  0 
  5  0  1 

h(x) = x mod 5, i.e., permutation 
     [5,1,2,3,4] 
g(x) = (2x+1) mod 5, i.e., permutation 
     [2,5,3,1,4] 

h(1) = 1 1 ∞ 
g(1) = 3 3 ∞ 

h(2) = 2 1 2 
g(2) = 0 3 0 

h(3) = 3 1 2 
g(3) = 2 2 0 

h(4) = 4 1 2 
g(4) = 4 2 0 

h(5) = 0 1 0 
g(5) = 1 2 0 

Sig1 Sig2 
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 Often, data is given by column, not row. 

 Example: columns = documents, rows = shingles. 

 If so, sort matrix once so it is by row. 
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 General idea: Generate from the collection of 
all elements (signatures in our example) a small 
list of candidate pairs: pairs of elements whose 
similarity must be evaluated. 

 For signature matrices: Hash columns to many 
buckets, and make elements of the same bucket 
candidate pairs. 
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 Pick a similarity threshold t, a fraction < 1. 
 We want a pair of columns c and d of the 

signature matrix M to be a candidate pair if and 
only if their signatures agree in at least fraction t 
of the rows. 

 I.e., M(i, c) = M(i, d) for at least fraction t values of i. 



32 

 Big idea: hash columns of signature matrix M  
several times. 

 Arrange that (only) similar columns are likely 
to hash to the same bucket. 

 Candidate pairs are those that hash at least 
once to the same bucket. 
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Matrix M 

r  rows 
per band 

b  bands 

One hash 
value 

One signature 
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 Divide matrix M  into b bands of r rows. 
 For each band, hash its portion of each column 

to a hash table with k buckets. 

 Make k as large as possible. 

 Candidate column pairs are those that hash to 
the same bucket for ≥ 1 band. 

 Tune b and r to catch most similar pairs, but 
few nonsimilar pairs. 
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Matrix M 

Buckets 
 

Columns 6 and 7 are 
surely different. 

Columns 2 and 6 
are probably identical 
in this band. 

r  rows b  bands 
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 Suppose 100,000 columns. 
 Signatures of 100 integers. 
 Therefore, signatures take 40Mb. 

 They fit easily into main memory. 

 Want all 80%-similar pairs of documents. 
 5,000,000,000 pairs of signatures can take a 

while to compare. 
 Choose 20 bands of 5 integers/band. 
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 Probability C1, C2 identical in one particular 
band: (0.8)5 = 0.328. 

 Probability C1, C2 are not similar in any of the 20 
bands: (1-0.328)20 = .00035 . 

 i.e., about 1/3000th of the 80%-similar underlying 
sets are false negatives. 
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 Probability C1, C2 identical in any one particular 
band: (0.4)5  = 0.01 . 

 Probability C1, C2 identical in ≥ 1 of 20 bands: 
≤ 20 * 0.01 = 0.2 . 

 But false positives much lower for similarities 
<< 40%.  



39 

       Similarity s of two sets 

Probability 
of sharing 
a bucket 

t 

No chance 
if s < t 

Probability 
= 1 if s > t 
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Similarity s of two sets 

Probability 
of sharing 
a bucket 

Remember: 
probability of equal 
minhash values 
= Jaccard similarity 

t 

False 
positives 

False 
negatives 



41 

Similarity s  of two sets 

Probability 
of sharing 
a bucket 

t 

s r  

All rows 
of a band 
are equal 

1 - 

Some row 
of a band 
unequal 

( )b  

 
No bands 
identical 

1 - 

At least 
one band 
identical 

t ~ (1/b)1/r  
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 s  1-(1-sr)b 

.2    .006 

.3    .047 

.4    .186 

.5    .470 

.6    .802 

.7    .975 

.8    .9996 
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 Tune r and c to get almost all pairs with 
similar signatures, but eliminate most pairs 
that do not have similar signatures. 

 Check that candidate pairs really do have 
similar signatures. 

 Optional: In another pass through data, 
check that the remaining candidate pairs 
really represent similar sets . 


